Cell cycle control (and more) by programmed −1 ribosomal frameshifting: implications for disease and therapeutics
نویسندگان
چکیده
Abstract Like most basic molecular mechanisms, programmed -1 ribosomal frameshifting (-1 PRF) was first identified in viruses. Early observations that global dysregulation of -1 PRF had deleterious effects on yeast cell growth suggested that -1 PRF may be used to control cellular gene expression, and the cell cycle in particular. Collection of sufficient numbers of viral -1 PRF signals coupled with advances in computer sciences enabled 2 complementary computational approaches to identify -1 PRF signals in free living organisms. The unexpected observation that almost all -1 PRF events on eukaryotic mRNAs direct ribosomes to premature termination codons engendered the hypothesis that -1 PRF signals post-transcriptionally regulate gene expression by functioning as mRNA destabilizing elements. Emerging research suggests that some human diseases are associated with global defects in -1 PRF. The recent discovery of -1 PRF signal-specific trans-acting regulators may provide insight into novel therapeutic strategies aimed at treating diseases caused by changes in gene expression patterns.
منابع مشابه
The many paths to frameshifting: kinetic modelling and analysis of the effects of different elongation steps on programmed –1 ribosomal frameshifting
Several important viruses including the human immunodeficiency virus type 1 (HIV-1) and the SARS-associated Coronavirus (SARS-CoV) employ programmed -1 ribosomal frameshifting (PRF) for their protein expression. Here, a kinetic framework is developed to describe -1 PRF. The model reveals three kinetic pathways to -1 PRF that yield two possible frameshift products: those incorporating zero frame...
متن کاملA Three-Stemmed mRNA Pseudoknot in the SARS Coronavirus Frameshift Signal
A wide range of RNA viruses use programmed -1 ribosomal frameshifting for the production of viral fusion proteins. Inspection of the overlap regions between ORF1a and ORF1b of the SARS-CoV genome revealed that, similar to all coronaviruses, a programmed -1 ribosomal frameshift could be used by the virus to produce a fusion protein. Computational analyses of the frameshift signal predicted the p...
متن کاملmRNA SUICIDE: DESTABILIZATION BY PROGRAMMED RIBOSOMAL FRAMESHIFTING
Title of Document: mRNA SUICIDE: DESTABILIZATION BY PROGRAMMED RIBOSOMAL FRAMESHIFTING Jonathan L. Jacobs, Ph.D., 2006 Directed By: Associate Professor Jonathan D. Dinman, Department of Cell Biology & Molecular Biology Cis-acting mRNA elements that promote programmed -1 ribosomal frameshifting (-1 PRF) redirect a fraction of translating ribosomes into a new translational reading frame. In virus...
متن کاملShifty Ciliates Frequent Programmed Translational Frameshifting in Euplotids
Recent work suggests that there is a high frequency of programmed +1 translational frameshifting in ciliates of the Euplotes genus. Frequent frameshifting may have been potentiated by stop codon reassignment, which is also a feature of this group.
متن کاملTriplex structures in an RNA pseudoknot enhance mechanical stability and increase efficiency of -1 ribosomal frameshifting.
Many viruses use programmed -1 ribosomal frameshifting to express defined ratios of structural and enzymatic proteins. Pseudoknot structures in messenger RNAs stimulate frameshifting in upstream slippery sequences. The detailed molecular determinants of pseudoknot mechanical stability and frameshifting efficiency are not well understood. Here we use single-molecule unfolding studies by optical ...
متن کامل